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Outline

e (General overview of pressure drop behavior

* Relationship of pressure drop to pore microstructure for
bare cordierite filters

» Effects of catalyst on pressure drop

« Optimization of pore microstructure for pressure drop,
filtration efficiency, strength, and thermal mass
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Pressure Drop versus Soot Loading
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Experimental Study

* Objective: Quantify relationship between pressure drop and
pore microstructure and utilize to design optimized filter

— Fabricated 2” x 6” cordierite filters (200 cpsi) with over 100 different
pore microstructures

— Characterized %porosity, median pore size, and width of pore size
distribution by mercury porosimetry

— Measured clean and artificial soot-loaded pressure drop vs flow rate
at room temperature

— Derived a model for pressure drop in terms of pore parameters

— Catalyzed selected candidates to determine optimum pore
microstructure for catalyzed filter
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Porosity and Median Pore Size
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Pore Size Distribution
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Pore Size Distribution
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Key Learnings from Data Analysis

Clean pressure drop decreases for larger values of
(Yoporosity)(median pore size)?

— Consistent with models of flow through cylindrical capillary pores
— Median pore size is dominant

Soot-loaded pressure drop decreases for larger values of
%porosity and smaller values of (ds,-d;,)/ds,, NArrower pore
size distribution

— Better pore connectivity
— Lower gas velocity through pore necks
— Less dense packing of soot in near-surface pores
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Curves Computed from Regression Equations:
Effect of Pore Size Distribution
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Curves Computed from Regression Equations:

Effect of Porosity
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Catalysis Coating Study

e Six cordierite materials with range in pore microstructures
o 2" x 6" filters, 200 cpsi, 12 mil walls

 Atrtificial soot loaded and pressure drop tested

e Soot burned out at 650°C

« (Catalyzed and soot-loaded pressure drop re-measured

 Two catalyst systems examined

— Detailed results for System “A”
— Summary of System “B” versus “A”
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Porosity and Median Pore Size
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Examples of Pore Microstructures
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Soot-Loaded Pressure Drop
of Catalyzed Filters
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Bare & Catalyzed Pressure Drop: 50% Porosity
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Bare & Catalyzed Pressure Drop: 50% Porosity
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Bare & Catalyzed Pressure Drop: 50% Porosity
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Bare & Catalyzed Pressure Drop: 50% Porosity
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Bare & Catalyzed Pressure Drop: 60% Porosity
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Pressure Drop Summary (5 gramsliter soot loading)
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Pressure Drop Summary (5 gramsliter soot loading)
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Thermal Durability during
Regeneration
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Regeneration and Volumetric Heat Capacity

 Temperatures reached during uncontrolled regenerations
must be minimized for survivability of both filter and catalyst

 Peak temperature is reduced for filters with high “thermal

mass” (heat capacity per unit volume)
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Pressure Drop vs Volumetric Heat Capacity
of Bare Filters
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Pressure Drop vs Volumetric Heat Capacity
of Bare Filters
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Summary

« By tailoring the ceramic pore microstructure or catalyst
formulation, very low pressure drops have been achieved
for catalyzed cordierite DPFs

« Soot-loaded AP for bare or catalyzed filters is minimized for
high pore connectivity (high porosity or narrow psd)

« Bare or catalyzed filters with moderate %porosity and fine,
narrow pore size distribution yield soot-loaded AP eguivalent
to high-porosity filters with coarse, broad pore size
distribution
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Conclusion

 Research on effects of pore microstructure, cell geometry,
and catalyst formulation have yielded new catalyzed

cordierite DPFs with unio

%FE, and higher therma

ue combinations of low AP, high
mass, without sacrificing strength

CORNING



CORNING

Discovering Beyond Imagination



	New Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications
	Outline
	Pressure Drop versus Soot Loading
	Experimental Study
	Porosity and Median Pore Size
	Pore Size Distribution
	Pore Size Distribution
	Key Learnings from Data Analysis
	Curves Computed from Regression Equations: Effect of Pore Size Distribution
	Curves Computed from Regression Equations: Effect of Porosity
	Catalysis Coating Study
	Porosity and Median Pore Size
	Examples of Pore Microstructures
	Soot-Loaded Pressure Drop of Catalyzed Filters
	Bare & Catalyzed Pressure Drop: 50% Porosity
	Bare & Catalyzed Pressure Drop: 50% Porosity
	Bare & Catalyzed Pressure Drop: 50% Porosity
	Bare & Catalyzed Pressure Drop: 50% Porosity
	Bare & Catalyzed Pressure Drop: 60% Porosity
	Pressure Drop Summary (5 grams/liter soot loading)
	Pressure Drop Summary (5 grams/liter soot loading)
	Thermal Durability during Regeneration
	Regeneration and Volumetric Heat Capacity
	Pressure Drop vs Volumetric Heat Capacity of Bare Filters
	Pressure Drop vs Volumetric Heat Capacity of Bare Filters
	Summary
	Conclusion

